导数是函数图像在某一点处的斜率,是纵坐标增量(Δy)和横坐标增量(Δx)在Δx-->0时的比值。
而微分是指函数图像在某一点处的切线在横坐标取得增量Δx以后,纵坐标取得的增量,一般表示为dy。 积分是微分的逆运算,即知道了函数的导函数,反求原函数。积分被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
微分和积分是相反的一对运算。微分是求变化率,积分是求变化总量。比如,求加速度,就是用微分,即对速度进行求导,如果是求路程,就是对速度在某个时间段内进行积分。