an = n^2 = n(n+1) -n =(1/3)[ n(n+1)(n+2) -(n-1)n(n+1) ] - (1/2)[n(n+1) -(n-1) n] Sn =a1+a2+...+an =(1/3)n(n+1)(n+2) - (1/2)n(n+1) =(1/6)n(n+1)[ 2(n+2) -3] =(1/6)n(n+1)( 2n+1)
关于这个问题,n²的前n项和可以用以下公式求解:
1² + 2² + 3² + ... + n² = n(n+1)(2n+1)/6
其中,n为正整数。