所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等等)的方程或方程组。
一次不定方程:二元一次不定方程的一般形式为ax+by=c。其中 a,b,c 是整数,ab ≠ 0。此方程有整数解的充分必要条件是a、b的最大公约数整除c。多元一次:关于整数多元一次不定方程,可以有矩阵解法、程序设计等相关方法辅助求解。二元二次:二元二次不定方程本质上可以归结为求二次曲线(即圆锥曲线)的有理点或整点问题高次:对高于二次的不定方程,相当复杂。当n>2时,x^n+y^n=z^n没有非平凡的整数解 ,即著名的费马大定理,历经3个世纪 ,已由英国数学家安德鲁 ·维尔斯证明完全可以成立。多元高次不定方程多元高次不定方程没有一般的解法,任何一种解法都只能解决一些特殊的不定方程,如利用二次域来讨论一些特殊的不定方程的整数解.常用的解法⑴代数恒等变形:如因式分解、配方、换元等;⑵不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解;⑶同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解;⑷构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;⑸无穷递推法。
不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。例如:x+y=3就是一个不定方程,它没有确定的解,它有无数多的解。