根据特征值求基础解系,类似于求解线性方程组的过程:矩阵A=第一行1,-1,0 第二行-1,2,-1,第三行0,-1,1,f(λ)=|λE-A|=λ(λ-1)(λ-3),求得三个特征值:0,1,3.将其中一个特征值3带入齐次线性方程组(λ。E-A)X=0;初等变化后的矩阵:第一行1,0,-1第二行:0,1,2 第三行0,0,0这里复习一下齐次线性方程组的解法:将上述矩阵中的首元素为1对应的X项放到左边,其他放到左边得到:X1=X3,X2=-2X3,设X3为自由未知量,参考取值规则(自行脑补一下吧?)
这里随便取一个X3=1,并求出X1=1,X2=-2;则基础解系:a1=第一行1,第二行-2 第三行1
如果题目是齐次线性方程组, 系数矩阵经初等行变换化为如此,
则进一步初等行变换,得
[1 2 3 0]
[0 1 1 0]
[0 0 0 1]
进一步初等行变换,得
[1 0 1 0]
[0 1 1 0]
[0 0 0 1]
即方程组化为
x1 = - x3
x2 = - x3
x4 = 0
取 x3 = -1, 得基础解系 (1, 1, -1, 0)^T
齐次方程组的通解是 x = k(1, 1, -1, 0)^T