1、对数函数的运算公式如下图所示:
2、根据对数公式举例计算如下:
扩展资料:
1、对数性质:在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0<a<1时)
2、常用对数:lg(b)=log10b(10为底数)。自然对数:ln(b)=logeb(e为底数)。其中e为无限不循环小数,通常情况下只取e=2.71828。
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)log(a^n)(M)=1log(a)(M)(n∈R)
(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(6)log(a^n)M^m=(m)log(a)M
(7)对数恒等式:a^log(a)N=N; log(a)a^b=b
扩展资料
数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。 在简单的情况下,乘数中的对数计数因子。
更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
正比例函数y=kx(k≠0);
反比例函数y=k/x(k≠0)
一次函数y=kx+b(k≠0);
二次函数y=ax^2+bx+c(a≠0);
幂函数y=x^a;
指数函数y=a^x(a>0,a≠1);
对数函数y=log(a)x(a是底数,x是真数,且a>0,a≠1);