x→0-,就是x从0的左侧趋向于0,所以x<0,如果x→0+,就是x从0的右侧趋向于0,x0.同理x→1-,就是x从1的左侧趋向于1,所以x<1,如果x→1+,就是x从1的右侧趋向于1,x1.例如:lim[x→1-] f(x) 注意此时x<1=lim[x→1-] (x-1)=0lim[x→1+] f(x) 此时x1=lim[x→1+] (2-x)=1左右极限不等,因此函数在x=1处为跳跃间断点x-1和2-x都是初等函数,这种初等函数求极限时只要能直接算函数值就,就代值直接算就行.
极限
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。