圆锥曲线曲率公式推导

2024-11-06 07:40:29
圆锥曲线曲率公式推导急求答案,帮忙回答下
写回答

最佳答案

曲率k=y''/[(1+(y')^2)^(3/2)],其中y',y"分别为函数y对x的一阶和二阶导数。

1、设曲线r(t) =(x(t),y(t)),曲率k=(x'y" - x"y')/((x')^2 + (y')^2)^(3/2).

2、设曲线r(t)为三维向量函数,曲率k=|r'×r"|/(|r'|)^(3/2),|x|表示向量x的长度。

3、向量a,b的外积,若a=(a1,a2,a3),b=(b1,b2,b3),a×b=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)

2024-11-06 07:40:29
赞 5798踩 0

全部回答(1)