有理数和无理数的区别为:小数形式不同,整数之比不同,位数不同等。
1、小数形式不同
把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数。
比如4=4.0, 4/5=0.8, 1/3=0.33333……而无理数只能写成无限不循环小数,比如√2=1.414213562…………根据这一点,人们把无理数定义为无限不循环小数。
2、整数之比不同
所有的有理数都可以写成两个整数之比;而无理数不能。
3、位数不同
有理数的位数是有限的,二无理数的位数是无限的。
1、两者概念不同。
有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。
无理数,也称为无限不循环小数。简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
2、两者性质不同。
有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。
无理数的性质是由整数的比率或分数构成的数字。
3、两者范围不同。
有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。
而无理数是指实数范围内,不能表示成两个整数之比的数。
2
判断无理数的方法
无理数也称为无限不循环小数,常见的无理数主要包括以下几种形式:
1、含π的数,如:2π等
2、根式,如:√5等;
3、函数式,如:lg2,sin1°等;
无理数也可以通过非终止的连续分数来处理。
无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率等。
而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比,如21/7等。
有理数是可以用有限的数字表示的数字,而无理数则不能用有限的数字表示,它们的小数部分无限长,无法用有限的数字表示。
有理数可以用有限的数字表示,比如1/2、3/4等,而无理数则不能用有限的数字表示,比如π、√2等,它们的小数部分无限长,无法用有限的数字表示。
在数学中有理数和无理数分别是指能否人为的区分清楚的数。比如根号3就是无理数,因为根号3是无限不循环小数,没有任何的循环规律,因此也叫做无理。
1就是有理数,因为一可以用来加减乘除,是有它的运算法则的。
1、性质不同。有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
2、范围不同。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。
3、结构不同。有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。