向量积公式如下:
向量积|c|=|a×b|=|a||b|sin<a,b>。
向量相乘分内积和外积。
内积 ab=丨a丨丨b丨cosα(内积无方向,叫点乘)。
外积 a×b=丨a丨丨b丨sinα(外积有方向,叫×乘)那个读差,即差乘,方便表达所以用差。
另外,外积可以表示以a、b为边的平行四边形的面积。
=两向量的模的乘积×cos夹角。
=横坐标乘积+纵坐标乘积。
代数规则
1、反交换律:a×b=-b×a。
2、加法的分配律:a×(b+c)=a×b+a×c。
3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。
4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。
6、两个非零向量a和b平行,当且仅当a×b=0。
向量积公式是ab=x1x2+y1y2=|a||b|cosθ,向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。
向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。