如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
已知:α⊥β,α∩β=l,O∈l,OP⊥l,OP⊂α。求证:OP⊥β。
证明:过O在β内作OQ⊥l,则由二面角知识可知∠POQ是二面角α-l-β的平面角。
∵α⊥β
∴∠POQ=90°,即OP⊥OQ
∵OP⊥l,l∩OQ=O,l⊂β,OQ⊂β
∴OP⊥β
所以如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
扩展资料
面面垂直的性质:
性质定理1:如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。
性质定理2:经过空间内一点,有且只有一条直线垂直已知平面。
性质定理3:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。
性质定理4:垂直于同一平面的两条直线平行。
推论:空间内如果两条直线都与第三条直线平行,那么这两条直线平行。(该推论意味着平行线的传递性不仅在平面几何上,在空间几何上也成立。)