P值的计算公式是 P=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;P=1-Φ(z0) 当被测假设H1为 p大于p0时;P=Φ(z0) 当被测假设H1为 p小于p0时。
总之,P值越小,表明结果越显著。统计学中回归分析的主要内容为:
1、从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。
2、对这些关系式的可信程度进行检验。
3、在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量加入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。
P值的计算方法:
1、左侧检验P值是当μ=μ0时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率
2、右侧检验P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率
3、双侧检验P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率 P值的意义: p值是指在一个概率模型中,统计摘要(如两组样本均值差)与实际观测数据相同,或甚至更大这一事件发生的概率。换言之,是检验假设零假设成立或表现更严重的可能性。p值若与选定显著性水平(0.05或0.01)相比更小,则零假设会被否定而不可接受。
P值计算
=2[1-Φ(z0)]
当被测假设H1为p不等于p0时;
=1-Φ(z0)
当被测假设H1为 p大于p0时;
=Φ(z0)
当被测假设H1为 p小于p0时;
z0=(x-n*p0)/(根号下(np0(1-p0)))
P值的计算:
一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:
左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}
右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}