漫游猫认证
导数与导函数无差别,按照导数的定义————增量比的极限(导数的数学意义),是刻画函数在一点处函数的增量与自变量的增量快慢的变化率,在几何上就表示该点切线的斜率(导数的几何意义),在变速运动中的瞬时速度(导数的物理意义)。
这些都是指函数在一点的情况,如果函数在定义域内每一点都可导,可导函数所形式的函数叫导函数,简称导数。