全微分定理:如果函数z=f(x,y)在点p0(x0,y0)处可微,则z=f(x,y)在p0(x0,y0)处连续,且各个偏导数存在,并且有f′x(x0,y0)=A,f′y(x0,y0)=B。若函数z=f(x,y)在点p0(x0,y0)处的偏导数f′x,f′y连续,则函数f在点p0处可微。
具体f(x,y)=arctan(y/x)f(x,y)x=1/(1+(y/x)²) *(-y/x²)=-y/(x²+y²)|(1,1)=-1/2f(x,y)y=1/(1+(y/x)²) *(1/x)=x/(x²+y²)|(1,1)=1/2f(x,y)(1,1)=-1/2dx+1/2dy
z=arctanxy的全微分是
dz=(xdy+ydx/(1+x^2y^2))。