三角形的三条高交于一点.该点叫做三角形的垂心.。
其性质包括:
1. 三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2.垂心外心内心三心共线.。
3.垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
已知:ΔABC中,AD、BE是两条高,AD、BE交于点连接CO并延长交AB于点F 求证:CF⊥AB 证明:连接DE ∵∠ADB=∠AEB=90度 ∴A、B、D、E四点共圆 ∴∠ADE=∠ABE ∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC ∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度 ∴∠ACF+∠BAC=90度 ∴CF⊥AB 因此,垂心定理成立!
这里不方便画图,我就用文字来表达了。
画任意一个三角形ABC,垂心为D,外心为E,设B垂AC于F,
C垂AB于H,做△ABC的外接圆,ABC为三顶点abc为三内角
S为△ABC的面积
由正弦定理AB/sinc=BC/sina=AC/sinb=2R
由图像得∠c=∠BEH
∴EH=Rcosc=AB/(2tanc)
CD=CF/cos∠ACH=BCcosc/(CH/AC)=AC*BC*cosc/CH
AC*BCsinc/2=S=AB*CH/2
代入上式得CD=AB/tanc=2DH。