摆线即滚轮线。圆轮滚动而不滑动,轮上固定点 M 的轨迹就是滚轮线即摆线。
因此其一拱横坐标长为 2πa
记滚轮圆心为 C, C 在 x 轴上投影为 A,
OA = 弧MA = at, 则 点 M 的横坐标
x = OA - asint = at - asint = a(t-sint)
点 M 的纵坐标 y = a -acost = a(1-cost)
扩展资料:
圆上定点的初始位置为坐标原点,定直线为x轴。当圆滚动j 角以后,圆上定点从 O 点位置到达P点位置。当圆滚动一周,即 j从O变动2π时,动圆上定点描画出摆线的第一拱。
再向前滚动一周, 动圆上定点描画出第二拱,继续滚动,可得第三拱,第四拱……,所有这些拱的形状都是完全相同的 ,每一拱的拱高为2a(即圆的直径),拱宽为2πa(即圆的周长)。
由以上摆线生成的几何关系 若仍保持以上的内切滚动关系,将基圆和摆线视为刚体相对于发生圆运动,则形成了摆线图形相对发生圆圆心Op作行星方式的运动,这就是行星摆线传动机构的基本原理。