二重积分中的形心计算公式是∫∫D xdxdy=重心横坐标×D的面积,∫∫D ydxdy=重心纵坐标×D的面积。
面的形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。只有一个对称轴的截面,其形心一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。建坐标:形心位置:(Xc,Yc);Xc=[∫a(ρxdA)]/ρA=[∫a(xdA)]/A=Sy/A;Yc=[∫a(ρydA)]/ρA=[∫a(ydA)]/A=Sx/A;把均匀平面薄片的重心叫做这平面薄片所占的平面图形的形心。
面的形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。
n 维空间中一个对象X的几何中心或形心是将X分成矩相等的两部分的所有超平面的交点。非正式地说,它是X中所有点的平均。如果一个物件质量分布平均,形心便是重心。