等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。
这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。其中{an}中的每一项均不为0。注:q=1时,an为常数列。等比数列有个性质:a(m)*a(n)=a(p)*a(q),则下角标m+n=p+q,所以a(1)a(3)=64,意味着a(2)²=64,a(n)>0,q>a(2)=8,又a(2)+a(4)=72,
等比数列首项是a1,公比是q
通项公式是
当q=1时非常简单,所有项都等于第一项a1,和自然就是a1*n
当q不等于1时
an=a1*q^(n-1)
前n项和是
Sn=a1(1-q^n)/(1-q)