量子霍尔效应是在极低的温度下电子在磁场方面的物理学理论,对效果的观察清楚地证实了量子力学作为一个整体。
结果之精确,以至于电阻测量的标准使用了量子霍尔效应,这也支持了在超导体方面的应用。埃德温·霍尔于1879年发现霍尔效应,当电流通过置于磁场中的导体时,霍尔效应被观察到。电荷载流子通常是电子,但也可以是质子,由于磁场的影响,会散射到导体的一侧。这种现象可以想象为一系列汽车在高速公路上行驶时,由于强风而被推到一边。当汽车试图向前行驶时,它们走了一条弯曲的道路,但被迫向侧面行驶。导体两侧之间产生电位差。电压差非常小,是导体成分的函数。信号放大是基于霍尔效应制造有用仪器的必要条件。电势的不平衡是霍尔探针测量磁场的原理。随着半导体的普及,物理学家开始对研究薄箔片中的霍尔效应感兴趣,电荷载流子基本上局限于二维运动。他们在强磁场和低温下给导电箔通电。电子没有看到在弯曲的连续路径中被侧向拉动,而是突然跳跃。当磁场强度改变时,特定能级的流动阻力会出现尖峰。在峰值之间,电阻下降到接近零的值,这是低温超导体的特征。物理学家还意识到,引起电阻峰值所需的能级不是导体成分的函数。电阻峰值出现在彼此的整数倍处。这些峰值是如此的可预测和一致,以至于基于量子霍尔效应的仪器可以用来建立电阻标准。这些标准对于测试电子产品和确保可靠的性能至关重要。量子霍尔理论原子结构的概念,即能量在亚原子水平上以离散的、完整的形式存在,早在1975年就预测了量子霍尔效应。
1980年,克劳斯·冯·克里津获得了诺贝尔奖,因为他发现量子霍尔效应确实是离散的,这意味着电子只能以明确定义的能量水平存在。量子霍尔效应已经成为支持物质量子性质的另一个论点。
如何理解量子霍尔效应,就得先理解霍尔效应,一起来看看吧!
霍尔效应是美国物理学家霍尔于1879年在研究金属的导电机制时发现的。
霍尔效应的原理就是:当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个垂直于电子运动方向上的的作用力,从而在垂直于导体与磁感线的两个方向上产生电势差。
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。在电场强度与洛伦兹力产生平衡之后,不再聚集,此时电场将会使后来的电子和空穴受到电场力的作用而平衡掉磁场对其产生的洛伦兹力,使得后来的电子和空穴能顺利通过不会偏移,这个现象称为霍尔效应,而产生的内建电压称为霍尔电压。
量子霍尔效应(Quantum Hall effect),是霍尔效应的量子力学版本。一般看作是整数量子霍尔效应和分数量子霍尔效应的统称。
整数量子霍尔效应由马普所的德国物理学家冯·克利青发现。他因此获得1985年诺贝尔物理学奖。分数量子霍尔效应由崔琦、霍斯特·施特默和亚瑟·戈萨德发现,前两者因此与罗伯特·劳夫林分享1998年诺贝尔物理学奖。
整数量子霍尔效应最初在高磁场下的二维电子气体中观测到;分数量子霍尔效应通常在迁移率更高的二维电子气下才能观测到。
2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功在实验中从石墨分离出石墨烯,在室温下观察到量子霍尔效应。
K. Von Klitzing,G. Dorda,M. Pepper于1979年发现,霍尔常数(强磁场中,纵向电压和横向电流的比值)是量子化的,RH=V/I=h/νe2,ν=1,2,3,……。这种效应称为整数量子霍尔效应。进而,AT&T的D. Tsui、H. Stormer和A.Gossard发现,随着磁场增强,在v=1/3,1/5,1/7…等处,霍尔常数出现了新的台阶。这种现象称为分数量子霍尔效应。
R. Laughlin 给出了解释,他认为,由于极少量杂质的出现,整数v个朗道能级被占据,这导致电场与电子密度的比值B/ρ为h/ev,从而导致霍尔常数出现台阶。他还指出,由于在那些分数占有数处,电子形成了一种新的稳定流体,正是这些电子中的排斥作用导致了分数量子霍尔效应。
霍尔效应是磁电效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。这个电势差也被叫做霍尔电势差。 [编辑本段]霍尔效应的原理
导体中的电荷在电场作用下沿电流方向运动,由于存在垂直于电流方向的磁场,电荷受到洛伦兹力,产生偏转,偏转的方向垂直于电流方向和磁场方向,而且正电荷和负电荷偏转的方向相反,这样就产生了电势差。 [编辑本段]霍尔效应的发展
霍尔效应此后在测量、自动化、计算机和信息技术等领域得到了广泛的应用,比如测量磁场的高斯计。
在霍尔效应发现约100年后,德国物理学家克利青(Klaus von Klitzing, 1943-)等在研究极低温度和强磁场中的半导体时发现了量子霍耳效应,这是当代凝聚态物理学令人惊异的进展之一,克利青为此获得了1985年的诺贝尔物理学奖。
之后,美籍华裔物理学家崔琦(Daniel Chee Tsui,1939- )和美国物理学家劳克林(Robert B.Laughlin,1950-)、施特默(Horst L.St rmer,1949-)在更强磁场下研究量子霍尔效应时发现了分数量子霍尔效应,这个发现使人们对量子现象的认识更进一步,他们为此获得了1998年的诺贝尔物理学奖。
最近,复旦校友、斯坦福教授张首晟与母校合作开展了“量子自旋霍尔效应”的研究。“量子自旋霍尔效应”最先由张首晟教授预言,之后被实验证实。这一成果是美国《科学》杂志评出的2007年十大科学进展之一。如果这一效应在室温下工作,它可能导致新的低功率的“自旋电子学”计算设备的产生。
目前工业上应用的高精度的电压和电流型传感器有很多就是根据霍尔效应制成的,误差精度能达到0.1%以下