导数dy/dx=lim(△x->0)[y(x+△x)-y(x)]/[(x+△x)-x]=lim(△x->0)[y(x+△x)-y(x)]/△x(其中y=y(x))显然,导数dy/dx是和函数y(x)的变化有关的量。
当0表示一个点(0,0),即x=0、y=0,它是没意义的,因为它不存在变不变化的说法,也就没有导数这一概念。当0表示一个函数与x=0的交点,即x=0、y=y(0),它就存在导数这一概念。
0的导数是0。f(0)=1①,f(0)’=0。将f(0)’=0代入①,所以,f(1)’=0。因为导数就是斜率,常数的斜率是一条平行于x轴的直线,tan0=0。所以,常数的导数是0,1的导数是0。
零的导数等于0。导数也叫导函数值,又名微商,是微积分中的重要基础概念,导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。