反映单元的状态及由这些单元组成的系统的状态之间的关系。
假定系统由n个单元组成,单元与系统都只有两个状态:正常和失效,分别用1和0表示。用变量xi(取值0或1)表示单元i的状态,尣=(x1,x2,…,xn)是单元的状态向量,用函数φ(尣)表示系统的状态,其定义为: φ(尣)称为系统的结构函数。通常的系统具有如下的性质:任一单元的失效不会使系统性能改善;系统中不包含多余的对其性能不发生影响的单元。这种系统称为关联系统。这一性质可用结构函数来表达:设φ(尣)是系统的结构函数。对任意的状态向量尣≤у,有φ(尣)≤φ(у),其中尣≤у表示各xi≤yi;对任意的i(1≤i≤n),存在状态向量尣使φ(0i,尣)=0,φ(1i, 尣)=1,其中(0i,尣)及(1i,尣)表示尣的第i个分量分别以0和1代替后所得的向量。典型的关联系统有:串联系统,即其中任一单元失效则系统失效;并联系统,即当所有单元失效时,则系统失效;k-out-of-n(F)系统,即当其中k或k个以上的单元失效时系统就失效,它是串联或并联系统的推广。在实际中,常用的2-out-of-3(F)系统是由三个单元组成而按多数单元的状态进行表决的系统。这三种系统的结构函数分别为 关联系统研究的问题是复杂系统结构函数的表达式、系统可靠度的求法及其上下界等。为了反映单元和系统功能的渐变性,多状态关联系统的研究已得到重视。